
Week 5 - Friday

 What did we talk about last time?
 Finished arrays
 Strings

 It's a standard for operating systems based on a long, complex
history with many companies and innovators

 The Open Group has the trademark on the term "UNIX," and
you're only allowed to call your OS Unix if it meets their Single
UNIX Specification

 Linux and FreeBSD and other free implementations of Unix do
not meet this specification

 Linus Torvalds started working in 1991 to
make a Unix kernel to run on an Intel 386

 He put Linus's Unix (Linux) under the GNU
GPL

 The BSD distributions also gave rise to free
BSD implementations (notably FreeBSD),
but their usage is much less widespread
than Linux

 Linux kernel version numbers are x.y.z
where x is a major version, y is a minor
version, and z is a minor revision

 Basic types in C are similar to those in Java, but there are
fewer

 There's a bool in C99 but not in C90

Type Meaning Size

char Smallest addressable chunk of memory Usually 1 byte

short Short signed integer type At least 2 bytes

int Signed integer type At least 2 bytes, usually 4 bytes

long Long signed integer type At least 4 bytes

float Single precision floating point type Usually 4 bytes

double Double precision floating point type Usually 8 bytes

 Unlike Java, C has
signed and unsigned
versions of all of its
integer types
 Perhaps even worse,

there's more than one
way to specify their
names

Type Equivalent Types

char signed char

unsigned char

short signed short
short int
signed short int

unsigned short unsigned short int

int signed int

unsigned int unsigned

long signed long
long int
signed long int

unsigned long unsigned long int

 The standard Hello World program is simpler in C, since no
external classes are needed

#include <stdio.h>

int main()
{

printf("Hello, World!\n");
return 0;

}

 Makefiles are called makefile or Makefile

all: hello

hello: hello.c
gcc -o hello hello.c

clean:
rm -f *.o hello

 Know how to convert between all of the following:
 Base 2 (binary)
 Base 8 (octal)
 Base 10 (decimal)
 Base 16 (hexadecimal)

 You can also write a literal in hexadecimal or octal
 A hexadecimal literal begins with 0x
 int a = 0xDEADBEEF;
 Hexadecimal digits are 0 – 9 and A – F (upper or lower case)

 An octal literal begins with 0
 int b = 0765;
 Octal digits are 0 – 7
 Be careful not to prepend other numbers with 0, because they will be in octal!

 Remember, this changes only how you write the literal, not how it is
stored in the computer

 Can't write binary literals in standard C (even though gcc allows it)

 Using a normal base 10 to base 2 conversion works fine for
unsigned integer values
 However many bits you've got, take the pattern of 1's and 0's and

convert to decimal
 What about signed integers that are negative?
 Most modern hardware (and consequently C and Java) use two's

complement representation

 Let's say you have a positive number n and want the
representation of –n in two's complement with k bits

1. Figure out the pattern of k 0's and 1's for n
2. Flip every single bit in that pattern (changing all 0's to 1's and

all 1's to 0's)
 This is called one's complement

3. Then, add 1 to the final representation as if it were positive,
carrying the value if needed

 Okay, how do we represent floating point numbers?
 A completely different system!
 IEEE-754 standard
 One bit is the sign bit
 Then some bits are for the exponent (8 bits for float, 11 bits for

double)
 Then some bits are for the mantissa (23 bits for float, 52 bits for

double)

 They want floating point values to be unique
 So, the mantissa leaves off the first 1
 To allow for positive and negative exponents, you subtract 127

(for float, or 1023 for double) from the written exponent
 The final number is:
 (-1)sign bit × 2(exponent – 127) × 1.mantissa

 For both integers and floating-point values, the most significant
bit determines the sign
 But is that bit on the rightmost side or the leftmost side?
 What does left or right even mean inside a computer?

 The property is the endianness of a computer
 Some computers store the most significant bit first in the

representation of a number
 These are called big-endian machines

 Others store the least significant bit first
 These are called little-endian machines

Function Result Function Result

cos(double theta) Cosine of theta exp(double x) ex

sin(double theta) Sine of theta log(double x) Natural logarithm of x

tan(double theta) Tangent of theta log10(double x) Common logarithm of x

acos(double x) Arc cosine of x
pow(double base,
double exponent)

Raise base to power
exponent

asin(double x) Arc sine of x sqrt(double x) Square root of x

atan(double x) Arc tangent of x ceil(double x) Round up value of x

atan2(double y, double x) Arc tangent of y/x floor(double x) Round down value of x

fabs(double x) Absolute value of x
fmod(double value,
double divisor)

Remainder of dividing
value by divisor

 There are preprocessor directives which are technically not
part of the C language

 These are processed before the real C compiler becomes
involved

 The most important of these are
 #include
 #define

 Conditional compilation directives

 We said that the size of int is compiler dependent, right?
 How do you know what it is?

 sizeof is a built-in operator that will tell you the size of a data
type or variable in bytes

#include <stdio.h>

int main() {
printf("%d", sizeof(char));
int a = 10;
printf("%d", sizeof(a));
double array[100];
printf("%d", sizeof(array));
return 0;

}

 In Java, constants are specified with the finalmodifier
 In C, you can use the keyword const
 Note that const is only a suggestion
 The compiler will give you a warning if you try to assign things to const

values, but there are ways you can even get around that

 Arrays have to have constant size in C
 Since you can dodge const, it isn't strong enough to be used for

array size
 That's why #define is more prevalent

const double PI = 3.141592;

 C uses one byte for a char value
 This means that we can represent the 128 ASCII characters

without a problem
 In many situations, you can use the full 256 extended ASCII sequence
 In other cases, the (negative) characters will cause problems

 Beware the ASCII table!
 Use it and die!

 Now that we have a deep understanding of how the data is stored
in the computer, there are operators we can use to manipulate
those representations

 These are:
 & Bitwise AND
 | Bitwise OR
 ~ Bitwise NOT
 ^ Bitwise XOR
 << Left shift
 >> Right shift

 Operators in every programming language have precedence
 Some of them are evaluated before others
 Just like order of operations in math

 * and / have higher precedence than + and –
 = has a very low precedence

 I don't expect you to memorize them all, but
 Know where to look them up
 Don't write confusing code

Type Operators Associativity

Primary Expression () [] . -> expr++ expr-- Left to right

Unary * & + - ! ~ ++expr --expr (typecast) sizeof Right to left

Binary

* / %

Left to right

+ -

>> <<

< > <= >=

== !=

&

^

|

&&

||

Ternary ?: Right to left

Assignment = += -= *= /= %= >>= <<= &= ^= |= Right to left

Comma , Left to right

 Like Java, the body of an if statement will only execute if the
condition is true
 The condition is evaluated to an int
 True means not zero

 An else is used to mark code executed if the condition is false

Sometimes this is natural and clear; at other times it can
be cryptic.

 We can nest if statements inside of other if statements,
arbitrarily deep

 Just like Java, there is no such thing as an else if statement
 But, we can pretend there is because the entire if statement

and the statement beneath it (and optionally a trailing else)
is treated like a single statement

 switch statements allow us to choose between many listed
possibilities

 Execution will jump to the matching label or to default (if
present) if none match
 Labels must be constant (either literal values or #define constants)

 Execution will continue to fall through the labels until it
reaches the end of the switch or hits a break
 Don't leave out break statements unless you really mean to!

 C has three loops, just like Java
 while loop
▪ You don't know how many times you want to run

 for loop
▪ You know how many times you want to run

 do-while loop
▪ You want to run at least once

 Like if statements, the condition for them will be evaluated
to an int, which is true as long as it is non-zero
 All loops execute as long as the condition is true

 Avoid the following constructs except when necessary:
 break
▪ Leaves loop immediately
▪ Necessary for switch statements

 continue
▪ Jumps to bottom of loop immediately

 Avoid the following construct always:
 goto

 Kernel
 The part of the OS that does everything important

 Process
 A currently running program

 Shell
 The program you type commands into

 Users and groups
 Users that can log in to the machines and logical groupings of them for

permission purposes
 Superuser
 The user that can do everything, often named root

 Files
 All input and output in Unix/Linux is viewed as a file operation

type name(arguments)
{

statements
}

 You don't have to specify a return type
 But you should
 intwill be assumed if you don't

 If you start calling a function before it has been defined, it will
assume it has return type int and won't bother checking its
parameters

 Because the C language is older, its compiler processes source
code in a simpler way

 It does no reasonable typechecking if a function is called
before it is defined

 To have appropriate typechecking for functions, create a
prototype for it

 Prototypes are like declarations for functions
 They usually come in a block at the top of your source file

 C does not force you to return a value in all cases
 The compiler may warn you, but it isn't an error

 Your function can "fall off the end"
 Sometimes it works, other times you get garbage

int sum(int a, int b)
{

int result = a + b;
return result;

}

int sum(int a, int b)
{

int result = a + b;
}

Two parts:
 Base case(s)
 Tells recursion when to stop
 For factorial, n = 1 or n = 0 are examples of base cases

 Recursive case(s)
 Allows recursion to progress
 "Leap of faith"
 For factorial, n > 1 is the recursive case

long long factorial(int n)
{
if(n <= 1)

return 1;
else

return n*factorial(n – 1);
}

Base Case

Recursive
Case

 The scope of a name is the part of the program where that name
is visible

 In Java, scope could get complex
 Local variables, class variables, member variables,
 Inner classes
 Static vs. non-static
 Visibility issues with public, private, protected, and default

 C is simpler
 Local variables
 Global variables

 If there are multiple variables with the same name, the one
declared in the current block will be used

 If there is no such variable declared in the current block, the
compiler will look outward one block at a time until it finds it

 Multiple variables can have the same name if they are declared at
different scope levels
 When an inner variable is used instead of an outer variable with the same

name, it hides or shadows the outer variable
 Global variables are used only when nothing else matches
 Minimize variable hiding to avoid confusion

 C files
 All the sources files that contain executable code
 Should end with .c

 Header files
 Files containing extern declarations and function prototypes
 Should end with .h

 Makefile
 File used by Unix make utility
 Should be named either makefile or Makefile

 To declare an array of a specified type with a given name and
a given size:

 Example with a list of type int:

type name[size];

int list[100];

 When you declare an array, you are creating the whole array
 There is no second instantiation step
 It is possible to create dynamic arrays using pointers and malloc(), but

we haven't talked about it yet
 You must give a fixed size (literal integer or a #define constant)

for the array
 These arrays sit on the stack in C
 Creating them is fast, but inflexible
 You have to guess the maximum amount of space you'll need ahead of

time

 You can access an element of an array by indexing into it, using
square brackets and a number

 Once you have indexed into an array, that variable behaves
exactly like any other variable of that type

 You can read values from it and store values into it
 Indexing starts at 0 and stops at 1 less than the length
 Just like Java

list[9] = 142;
printf("%d", list[9]);

 The length of the array must be known at compile time
 There is no length member or length() method
 It's unwise to use sizeof()

 Using an array in a function where it wasn't created is a little
different

 You have to pass in the length
 The function should list an array parameter with empty square

brackets on the right of the variable
 No brackets should be used on the argument when the function is

called
 Like Java, arguments are passed by value, but the contents of the

array are passed by reference
 Changes made to an array in a function are seen by the caller

 An array takes up the size of each element times the length of
the array

 Each array starts at some point in computer memory
 The index used for the array is actually an offset from that

starting point
 That’s why the first element is at index 0

 Unfortunately, C does not recognize strings as a type
 A string in C an array of char values, ending with the null

character
 Both parts are important
 It's an array of char values which can be accessed like anything else

in an array
 Because we don't know how long a string is, we mark the end with

the null character

 Write a function change() with the following prototype:
char change(char value);

 This function takes value and returns the opposite case
char

 Examples:
 If value is 'A', it returns 'a'
 If value is 'x', it returns 'X'
 If value is not a letter, it returns the input unchanged: '$' goes to
'$'

 Write a function quadratic() with the following
prototype:

void quadratic(double a, double b, double c);
 This function takes values a, b, and c that represent

coefficients in a quadratic equation: 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 = 0

 Use the quadratic formula 𝑥𝑥 = −𝑏𝑏± 𝑏𝑏2−4𝑎𝑎𝑎𝑎
2𝑎𝑎

to find the two
answers to this equation

 Print both answers out with exactly 3 points after the decimal

 Write a recursive function bits()with the following prototype:
int bits(unsigned int value);

 This function takes an unsigned int named value and returns the
number of 1 bits in it (0-32)

 This function should behave exactly like the similar function in
Project 2, except that it should be implemented recursively

 Hints:
 The number of 1 bits in 0 is 0
 An even number has the same 1 bits as the rest of the number, ignoring

the least significant bit
 An odd number has one more 1 bits than the rest of the number, ignoring

the least significant bit

 Exam 1!

 Review all the material so far
 Work on Project 3
 Exam 1 on Monday

	COMP 2400
	Last time
	Questions?
	Review
	What is Unix?
	Linux
	Types in C
	But, wait, it gets worse …
	Hello, World
	Sample makefile
	Bases
	Integers in other bases
	Binary representation
	Negative integer in two's complement
	Floating point representation
	More complexity
	One little endian
	Math library
	Preprocessor directives
	sizeof
	const
	char values
	Bitwise operators
	Precedence
	Precedence table
	if statements
	Nesting
	switch statements
	Three loops
	Bad things
	Systems programming concepts
	Anatomy of a function definition
	Differences from Java methods
	Prototypes
	Return values
	Useful Recursion
	Code for Factorial
	Scope
	Hiding
	Compiling multiple files
	Declaration of an array
	Differences from Java
	Accessing elements of an array
	Length of an array
	Passing arrays to functions
	Memory
	There are no strings in C
	Practice Problems
	Programming practice 1
	Programming practice 2
	Programming practice 3
	Upcoming
	Next time…
	Reminders

